Digital Subscriber Line

Digital Subscriber Line (DSL) is a family of technologies that provides digital data transmission over the wires of a local telephone network. DSL originally stood fordigital subscriber loop. In telecommunications marketing, the term Digital Subscriber Line is widely understood to mean Asymmetric Digital Subscriber Line (ADSL), the most commonly installed technical variety of DSL. DSL service is delivered simultaneously with regular telephone on the same telephone line. This is possible because DSL uses a higher frequency. These frequency bands are subsequently separated by filtering.

Typical setup and connection procedures

Physical connection must come first. On the customer side, the DSL Transceiver, or ATU-R, or more commonly known as a DSL modem, is hooked up to a phone line. The telephone company(telco) connects the other end of the line to a DSLAM, which concentrates a large number of individual DSL connections into a single box. The location of the DSLAM depends on the telco, but it cannot be located too far from the user because of attenuation, the loss of data due to the large amount of electrical resistance encountered as the data moves between the DSLAM and the user's DSL modem. It is common for a few residential blocks to be connected to one DSLAM.

When the DSL modem powers up it goes through a sync procedure. The actual process varies from modem to modem but generally involves the following steps:

1.     The DSL transceiver performs a self-test.

2.     The DSL transceiver checks the connection between the DSL transceiver and the computer. For residential variations of DSL, this is usually the Ethernet (RJ-45) port or a USB port; in rare models, a FireWire port is used. Older DSL modems sported a native ATM interface (usually, a 25 Mbit serial interface). Also, some variations of DSL (such as SDSL) use synchronous serial connections.

3.     The DSL transceiver then attempts to synchronize with the DSLAM. Data can only come into the computer when the DSLAM and the modem are synchronized. The synchronization process is relatively quick (in the range of seconds) but is very complex, involving extensive tests that allow both sides of the connection to optimize the performance according to the characteristics of the line in use. External, or stand-alone modem units have an indicator labeled "CD", "DSL", or "LINK", which can be used to tell if the modem is synchronized. During synchronization the light flashes; when synchronized, the light stays lit, usually with a green color.

Modern DSL gateways have more functionality and usually go through an initialization procedure very similar to a PC boot up. The system image is loaded from the flash memory; the system boots, synchronizes the DSL connection and establishes the IP connection between the local network and the service provider, using protocols such as DHCP or PPPoE. The system image can usually be updated to correct bugs, or to add new functionality.


The customer end of the connection consists of a terminal adaptor or in layman's terms "DSL modem". This converts data between the digital signals used by computers and the voltage signal of a suitable frequency range which is then applied to the phone line.

In some DSL variations (for example, HDSL), the terminal adapter connects directly to the computer via a serial interface, using protocols such as ethernet or V.35. In other cases (particularly ADSL), it is common for the customer equipment to be integrated with higher level functionality, such as routing, firewalling, or other application-specific hardware and software. In this case, the equipment is referred to as a gateway.

Some kinds of DSL technology require installation of appropriate filters to separate, or "split", the DSL signal from the low frequency voice signal. The separation can take place either at thedemarcation point, or with filters installed at the telephone outlets inside the customer premises. Either way has its practical and economical limitations. See ADSL for more information about this.

At the exchange, a digital subscriber line access multiplexer (DSLAM) terminates the DSL circuits and aggregates them, where they are handed off onto other networking transports. In the case of ADSL, the voice component is also separated at this step, either by a filter integrated in the DSLAM or by a specialized filtering equipment installed before it. The DSLAM terminates all connections and recovers the original digital information.

Protocols and configurations

Many DSL technologies implement an Asynchronous Transfer Mode (ATM) layer over the low-level bitstream layer to enable the adaptation of a number of different technologies over the same link.

DSL implementations may create bridged or routed networks. In a bridged configuration, the group of subscriber computers effectively connect into a single subnet. The earliest implementations usedDHCP to provide network details such as the IP address to the subscriber equipment, with authentication via MAC address or an assigned host name. Later implementations often use Point-to-Point Protocol (PPP) or Asynchronous Transfer Mode (ATM) (Point-to-Point Protocol over Ethernet (PPPoE) or Point-to-Point Protocol over ATM (PPPoA)), while authenticating with a userid and password and using Point-to-Point Protocol (PPP) mechanisms to provide network details.

Transmission methods

Transmission methods vary by market, region, carrier, and equipment.

§  2B1Q: Two-binary, one-quaternary, used for IDSL and HDSL

§  CAP: Carrierless Amplitude Phase Modulation - deprecated in 1996 for ADSL, used for HDSL

§  DMT: Discrete multitone modulation, the most numerous kind, also known as OFDM (Orthogonal frequency-division multiplexing)

Copyright © 2010 Masco Group. All Rights Reserved